Just being able to detect things won’t be useful, so I created a function to invoke some kind of action under a certain condition.
Thanks to Edge Electronics’s video, I was able to understand how to structure actions after detection. The procedures I took were the following.
1. Retrain SSD_Inception (TensorFlow1.15) to detect my smartphone
⇓
2. Export model as a frozen_graph.pb file
⇓
3. Load the model file in the python file that will do the detection
⇓
4. For each frame, run inference, extract coordinates from results and decide whether the smartphone is inside the box
Ok, so what should I create next that would be ACTUALLY  useful?
# Import packages
from models.research.object_detection.utils import visualization_utils as vis_util
from models.research.object_detection.utils import label_map_util
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
# Set up camera constants
IM_WIDTH = 1280
IM_HEIGHT = 720
# Select camera type
camera_type = 'usb'
#### Initialize TensorFlow model ####
# This is needed since the working directory is the object_detection folder.
sys.path.append('..')
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(
    CWD_PATH, 'ssd_inception_retrained_frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH, 'label_map.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 1
# Load the label map.
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
    label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
#### Initialize other parameters ####
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
font = cv2.FONT_HERSHEY_SIMPLEX
# Define counting box coordinates (top left and bottom right)
TL_outside = (int(IM_WIDTH*0.46), int(IM_HEIGHT*0.25))
BR_outside = (int(IM_WIDTH*0.8), int(IM_HEIGHT*.85))
# Initialize control variables used for Smartphone detector
detected_smartphone = False
smartphone_counter = 0
#### Smartphone detection function ####
def smartphone_detector(frame):
    # Use globals for the control variables so they retain their value after function exits
    global detected_smartphone
    global smartphone_counter
    # Turn frame to np array
    frame_expanded = np.expand_dims(frame, axis=0)
    # Perform the actual detection by running the model with the image as input
    (boxes, scores, classes, num) = sess.run(
        [detection_boxes, detection_scores, detection_classes, num_detections],
        feed_dict={image_tensor: frame_expanded})
    # Draw the results of the detection (aka 'visualize the results')
    vis_util.visualize_boxes_and_labels_on_image_array(
        frame,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=2,
        min_score_thresh=0.80)
    # Draw boxes defining locations when to detect boxes.
    cv2.rectangle(frame, TL_outside, BR_outside, (182, 71, 43), 2)
    cv2.putText(frame, "Put Smartphone Here",
                (TL_outside[0]+10, TL_outside[1]-10), font, 1, (182, 71, 43), 1, cv2.LINE_AA)
    # Check the class of the top detected object by looking at classes[0][0].
    # If the top detected object is a smartphone (1),
    # find its center coordinates by looking at the boxes[0][0] variable.
    # boxes[0][0] variable holds coordinates of detected objects as (ymin, xmin, ymax, xmax)
    score_result = np.squeeze(scores)[0]
    score_thresh = 0.7
    if (int(classes[0][0]) == 1) and (score_result > score_thresh):
        x = int(((boxes[0][0][1]+boxes[0][0][3])/2)*IM_WIDTH)
        y = int(((boxes[0][0][0]+boxes[0][0][2])/2)*IM_HEIGHT)
        # If object is in counting box, increment smartphone_counter variable
        if ((x > TL_outside[0]) and (x < BR_outside[0]) and (y > TL_outside[1]) and (y < BR_outside[1])):
            smartphone_counter += 1
        else:
            smartphone_counter = 0
    # Display Comment when Smartphone is inside the box
    if smartphone_counter > 0 and smartphone_counter < 30:
        detected_smartphone = True
        cv2.putText(frame, 'Found Your Smartphone!', (int(IM_WIDTH*.45),
                                                      int(IM_HEIGHT*.1)), font, 1, (63, 172, 41), 2, cv2.LINE_AA)
    # Display Comment when Smartphone is inside the box for more than 5 seconds
    if smartphone_counter > 30 and smartphone_counter < 60:
        detected_smartphone = True
        cv2.putText(frame, 'Smartphone Detected For More than 5 Seconds', (int(IM_WIDTH*.3),
                                                                           int(IM_HEIGHT*.1)), font, 1, (63, 172, 41), 2, cv2.LINE_AA)
    # Display Comment when Smartphone is inside the box for more than 10 seconds
    if smartphone_counter > 60:
        detected_smartphone = True
        cv2.putText(frame, 'Smartphone Detected For More than 10 Seconds', (int(IM_WIDTH*.3),
                                                                            int(IM_HEIGHT*.1)), font, 1, (63, 172, 41), 2, cv2.LINE_AA)
    # Draw counter info
    cv2.putText(frame, 'Detection counter: ' + str(smartphone_counter),
                (10, 100), font, 0.5, (182, 71, 43), 1, cv2.LINE_AA)
    return frame
#### Initialize camera and perform object detection ####
if camera_type == 'usb':
    # Initialize USB webcam feed
    camera = cv2.VideoCapture(0)
    ret = camera.set(3, IM_WIDTH)
    ret = camera.set(4, IM_HEIGHT)
    # Continuously capture frames and perform object detection on them
    while(True):
        t1 = cv2.getTickCount()
        # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
        # i.e. a single-column array, where each item in the column has the pixel RGB value
        ret, frame = camera.read()
        # Pass frame into Smartphone detection function
        frame = smartphone_detector(frame)
        # Draw FPS
        cv2.putText(frame, "FPS: {0:.2f}".format(
            frame_rate_calc), (30, 50), font, 1, (182, 71, 43), 2, cv2.LINE_AA)
        # All the results have been drawn on the frame, so it's time to display it.
        cv2.imshow('Object detector', frame)
        # FPS calculation
        t2 = cv2.getTickCount()
        time1 = (t2-t1)/freq
        frame_rate_calc = 1/time1
        # Press 'q' to quit
        if cv2.waitKey(1) == ord('q'):
            break
    camera.release()
cv2.destroyAllWindows()
								


